If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-80x-384=0
a = 1; b = -80; c = -384;
Δ = b2-4ac
Δ = -802-4·1·(-384)
Δ = 7936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7936}=\sqrt{256*31}=\sqrt{256}*\sqrt{31}=16\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-16\sqrt{31}}{2*1}=\frac{80-16\sqrt{31}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+16\sqrt{31}}{2*1}=\frac{80+16\sqrt{31}}{2} $
| x4-6x3+13x2-14x+6=0 | | х+3x+8=0 | | 5.7(x-2)=-0.3+30.6 | | 4z/7+5=8 | | 2/3(x-6)=-2x+20 | | 1/5(t+6)-2=3t+2/3 | | F(x)=-x^2-7x-8 | | 10/11x-9/11=9 | | 3x-7=8+7 | | 2/3x-1+3/3x+1=5/3x | | 3x+17=5x+2 | | 2x^2-2=46 | | 10^x+10=36 | | 10^x^+^10=36 | | 13x-41x-120=0 | | 2x-x^2=65 | | 7x-2x=-2x | | 12a/5=24/2 | | 3z+4-7z=-64 | | 2m=2/15 | | 2(v+4)-4v=14 | | -5x+5=7 | | -1/3+2m=-1/5 | | 1/3+2m=-1/5 | | -6+p=3.2 | | 6(5-8x)=126 | | 4(0.5f−0.25)=6+f= | | 3(b+1)=57 | | 3/5x-5x+60=7 | | x3/2=16 | | 3000/x=30 | | w/3-10=9 |